Remote Sensing of Fractional Green Vegetation Cover Using Spatially-Interpolated Endmembers

نویسندگان

  • Brian Alan Johnson
  • Ryutaro Tateishi
  • Toshiyuki Kobayashi
چکیده

Fractional green vegetation cover (FVC) is a useful parameter for many environmental and climate-related applications. A common approach for estimating FVC involves the linear unmixing of two spectral endmembers in a remote sensing image; bare soil and green vegetation. The spectral properties of these two endmembers are typically determined based on field measurements, estimated using additional data sources (e.g., soil databases or land cover maps), or extracted directly from the imagery. Most FVC estimation approaches do not consider that the spectral properties of endmembers may vary across space. However, due to local differences in climate, soil type, vegetation species, etc., the spectral characteristics of soil and green vegetation may exhibit positive spatial autocorrelation. When this is the case, it may be useful to take these local variations into account for estimating FVC. In this study, spatial interpolation (Inverse Distance Weighting and Ordinary Kriging) was used to predict variations in the spectral characteristics of bare soil and green vegetation across space. When the spatially-interpolated values were used in place of scene-invariant endmember values to estimate FVC in an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, the accuracy of FVC estimates increased, providing evidence that it may be useful to consider the effects of spatial autocorrelation for spectral mixture analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China

Linear spectral mixture analysis (SMA) is commonly used to infer fractional vegetation cover (FVC), especially for pixel dichotomy models. However, several sources of uncertainty including normalized difference vegetation index (NDVI) saturation and selection of endmembers inhibit the effectiveness of SMA for the estimation of FVC. In this study, Moderate-resolution Imaging Spectroradiometer (M...

متن کامل

Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (f pv) and NPV (f npv) using multispectral information. The purpose of this study is to evaluate seve...

متن کامل

Remote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)

To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...

متن کامل

Remote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)

To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...

متن کامل

Analysis and Mapping of the Spectral Characteristics of Fractional Green Cover in Saline Wetlands (NE Spain) Using Field and Remote Sensing Data

Inland saline wetlands are complex systems undergoing continuous changes in moisture and salinity and are especially vulnerable to human pressures. Remote sensing is helpful to identify vegetation change in semi-arid wetlands and to assess wetland degradation. Remote sensing-based monitoring requires identification of the spectral characteristics of soils and vegetation and their correspondence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012